Перейти к контенту
arriba-fitness.ru

arriba-fitness.ru

Медицинский портал

Что такое пенумбра при инсульте

Рубрика: ИнсультаАвтор:

Изучена возможность и эффективность внутривенной трансплантации мультипотентных мезенхимальных стволовых клеток после ишемического инсульта у крыс. Показано, что данный терапевтический метод активирует пролиферацию эндогенных нейрональных стволовых клеток в субэпендимной зоне боковых желудочков мозга и ангиогенез в пограничной с повреждением области, способствует сохранению жизнеспособности нейронов в этой же зоне, уменьшает объем повреждения тканей мозга и ускоряет восстановление когнитивных функций животных.

Введение

Ишемический инсульт - результат тяжелейшего рас стройства мозгового кровообращения в большинстве слу чаев приводит к инвалидизации и социальной дезадаптации пациентов. Это связано с тем, что головной мозг очень чув ствителен к недостатку кислорода. Понижение скорости кровотока до 10 мл/100 г в мин и ниже вызывает каскад биохимических реакций, приводящий к формированию ин фаркта мозга. Так называемое «ядро» инсульта формируется через 3-6 ч после прекращения кровотока в мозговой арте рии. «Деформирование» зоны повреждения продолжается 48-72 ч, а иногда и дольше. Лечение должно быть начато в течение 6 ч после проявления первых признаков заболева ния - в период «терапевтического окна», пока возможно со хранение жизнеспособности нейронов в зоне ишемического повреждения пенумбре. Однако на практике этого, как пра вило, не происходит. Первые часы после ишемического ин сульта уходят на доставку больного в стационар, обследова ние, постановку диагноза и т. д. В связи с этим необходимо разрабатывать новые подходы к терапии ишемического инсульта, применение которых было бы отсрочено по време ни хотя бы на несколько суток.


Инсульт

Клеточная терапия с помощью мультипотентных мезен химальных стволовых клеток (ММСК) - один из перспектив ных методов лечения ишемического инсульта. ММСК мультипотентные клетки, способные дифференцироваться в остеогенном, хондрогенном, адипоцитарном, миоцитарном, кардиомиоцитарном, а также в нейрональном и глиальном направлениях (1 4]. Разработаны и апробированы методи ки выделения ММСК из костного мозга (КМ) человека и животных, их дальнейшего культивирования и наращивания in vitro до необходимого количества с сохранением свойств. Это позволяет использовать для клеточной терапии аутоген ный материал и, тем самым, избежать проблем с иммунной совместимостью трансплантата и реципиента. Кроме того, ММСК влияют на течение воспалительной реакции в зоне тканевого повреждения (5) и активируют ангиогенез в по граничной с повреждением зоне [6, 7].

Цель данной работы - охарактеризовать распределение эндогенных ММСК в мозге после ишемического инсульта, дать морфологическую и поведенческую оценку воздей ствия ММСК на животного и сравнить эффективность вве дения ММСК на разных сроках после инсульта.

Материал и методы

Похожие темы:
На 9 день после инсульта
Инсульт левой стороны мозга прогноз
Инсульт по ишемическому типу это

Эксперименты проведены на 3 4х месячных крысах-самцах (п = 182) инбредной линии Вистар-Киото массой 150-170 г. Выделение ММСК. Суспензию КМ выделяли из диафи зов бедренных костей животных сразу после декапитации, вая Зеландия) с 20% сыворотки крови эмбрионов коров (Gibco, США) и 100 мкг/мл пенициллина/стрептомицина (Gibco, США)). КМ высевали на пластиковые чашки Петри (Sarstedt, Германия) и, отмыв через 48 ч после экспланта ции от форменных элементов крови с помощью раствора PBS (20 мМ фосфатный буфер, pH 7,4; 0,1 М NaCI), культи вировали ММСК в монослое при 37°С и 5% С02 в течение 6 7 сут. Для пересева культуры ММСК использовали ра створ трипсина и ЭДТА (Hyclone, Новая Зеландия). Замену питательной среды проводили каждые трое суток.

Фенотипирование ММСК крыс проводили методом про точной цитофлуориметрии на проточном цитофлуориметре FACSscan (Beckton Dickinson, США). ММСК окрашивали ан тителами против негативного маркера CD45 (Beckton Dickinson, США) и антителами против позитивных маркеров CD90, CD 106, CD44 (Beckton Dickinson, США). Для этого клетки снимали с чашек раствором трипсина и ЭДТА, дваж ды промывали раствором PBS), на 1 ч переносили в раствор моноклональных антител, конъюгированных с флуорохромом, в разведении 1:20. Затем клетки дважды промывали ра створом PBS и оценивали интенсивность свечения. Фено типирование проводили после первого, второго и третьего пересева культуры.

Для более полной характеристики полученных клеток их подвергали направленной дифференцировке in vitro в так называемых ортодоксальных (остеогенном, хондрогенном и адипоцитарном) и в нейрональном направлениях по описан ным ранее протоколам [5, 6].


Лечение инсульта и современные технологии— Максим Домашенко

Окрашивание ММСК флуорохромом РКН 26 проводи ли после третьего пересева культуры. Для этого клетки сни мали с чашек раствором трипсина и ЭДТА, дважды промы вали раствором PBS, на 4 мин помещали в раствор РКН 26 (из расчета 33 мкл на 10 млн клеток), блокировали даль нейшее окрашивание сывороткой крови эмбрионов коров (Gibco, США). Окрашенные клетки суспендировали в пита тельной среде без сыворотки (аМЕМ + 100 мкг/мл пени циллина/стрептомицина) с финальной концентрацией 5x106 клеток в 100 мкл. Эффективность окрашивания ММСК оценивали с помощью флуоресцентного микроскопа (Leica, Германия).

Экспериментальный ишемический инсульт у подопытных животных был смоделирован посредством окклюзии сред ней мозговой артерии (СМАо) (8). Крыс наркотизировали кетамином (125 мг/кг) интраперитонеально. Во время one рации и до выхода из наркоза температуру тела животных поддерживали на уровне 37°С. С левой стороны черепа от ла терального края глазницы до ушной раковины разрезали кожу, обнажая овальное отверстие (foramen ovale) тройнич ного нерва. С помощью бормашины под контролем опера ционного микроскопа это отверстие расширяли до размеров x

С помощью микроманипулятора выделяли среднюю мозговую артерию и производили ее электрокоагуляцию на протяже нии 2 3 мм. Операционную рану послойно ушивали.

Группы экспериментальных животных и проведенные на них исследования представлены в табл. 1.

В течение 6 недель после СМАо по 15 животных из групп № 1, 2 и 4 проходили поведенческое тестирование в водном лабиринте Морриса. Оценивали время, за которое живот ное было способно находить скрытую под водой платформу, основываясь на внешних ориентирах. Для водного теста использовали бассейн с жесткими пластиковыми стенками диаметром 145 см и глубиной 50 см. Тестирование начи нали через 2 и 5 нед после СМАо, каждая сессия длилась одну неделю. Декапитация в группах № 2 и 3 была проведена через 1, 2, 3, 5 суток и через 1, 2,4 и 6 нед. после СМАо; в группе № 4 - через 1, 2, 4 и 6 нед; в группе № 1 - только через 6 нед. На всех сроках декапитации, кроме 6 нед, по 6 живот ных из каждой группы подвергали прижизненной фиксации -перфузии через левый желудочек сердца 4% раствором па раформальдегида в PBS. Затем у них непосредственно после декапитации извлекали головной мозг и вырезали сегмент, включающий видимую зону повреждения и интактные кра евые зоны. Вырезанный блок разрезали пополам по зоне повреждения: половину блока фиксировали по стандартной методике в параформальдегиде, другую половину крио фиксировали. Перед криофиксацией образцы мозга поме щали в раствор криопротектора - сахарозы на 1 сут. Затем кусочки ткани охлаждали в парах азота в течение 10 с, по гружали в жидкий азот на 1 ч и помещали в холодильную камеру с температурой -70°С.


Инсульт -- Первая помощь при инсульте -- Проект +1

В связи с проведением морфометрического анализа через 6 недель фиксировали по 10 животных из каждой группы. Непосредственно после декапитации извлекали го ловной мозг и вырезали сегмент, включающий видимую зону повреждения и интактные краевые зоны. В данном случае выделенный сегмент головного мозга не делили на 2 части, а поступали следующим образом: у 6 животных его фикси ровали по стандартной методике в параформальдегиде, а у 4 криофиксировали. Структуры мозга идентифицировали по атласу [9].

Детекцию флуоресцентно меченных ММСК в головном мозге проводили с помощью флуоресцентного микроскопа (Leica, Германия) на гистологических срезах толщиной 7 мкм (криофиксация), изготовленных на криостатном микротоме Leica (Leica, Германия).

Объем повреждения головного мозга определяли следу ющим образом. Из блоков ткани мозга после парафиновой фиксации 6 животных из каждой группы, декапитированных через 6 нед. после СМАо, изготавливали серийные срезы толщиной 7 мкм. Площади ипсилатерального (Smc) и контра латерального (SK0HTp) полушарий с помощью программы PhotoM определяли на каждом 15м срезе. Объем повреж дения ткани мозга (V ) расчитывали по формуле:

Похожие темы:
Инсульт по ишемическому типу это
Инсульт не может говорить форум
Инсульт по ишемическому типу это

Полученные количественные данные были обработаны с помощью программы Statistica (Stat Soft Inc).

Иммуногистохимический анализ проводили для изучения процесса пролиферации клеток в субэпендимной зоне боко вых желудочков головного мозга; развития глиоза в зоне по вреждения мозговой ткани; жизнеспособности нейронов в пограничной с повреждением области; активации ангиоге неза в ткани мозга. Иммуногистохимическое исследование проводили с использованием первичных антител к Ki67 (ядерный маркер пролиферации), ГФКБ (глиальный фибрил лярный кислый белок маркерный белок астроцитов клеток), NeuN (маркерный белок ядер нейронов), vWF (фактор фон Виллебрандта, выявляющийся в эндотелиальных клетках).

Для проведения реакции срезы головного мозга депа рафинизировали в трех порциях орто ксилола, затем регид ратировали в спиртах понижающейся концентрации по стан дартной методике. Промывали в дистиллированной воде и переносили в 3% перекись водорода для блокировки эндо генной пероксидазы. Срезы промывали в PBS и наносили на них первичные антитела. После инкубации во влажных камерах двукратно промывали в PBS. Дальнейшую обработ ку производили при помощи наборов LSAB2/HRP rat (Dako, Дания) или Envision+ System HRP (Dako, Дания). При исполь зовании набора LSAB2/HRP rat после инкубации с вторич ными антителами из набора и двукратной промывки PBS наносили конъюгат стрептавидина и пероксидазы из того же набора. Инкубировали во влажных камерах при комнатной температуре. При использовании Envision+ после инкубации с первичными антителами и двукратной промывки PBS на носили раствор из набора. Инкубировали во влажных каме рах при комнатной температуре.


Нейровизуализация при инсульте

Затем (при использовании любого набора) после дву кратной промывки наносили рабочий раствор хромогена DAB (из набора DAB+, Dako, Дания). Образование окрашен ного продукта реакции контролировали под микроскопом. Препараты докрашивали астровым синим, толуидиновым синим или гематоксилином, дегидратацию и заключение в пермаунт проводили по стандартной методике. При проведении реакции с антителами к Ki67 и vWF пе ред нанесением первичных антител проводили процедуру теплового демаскирования антигена. Для этого срезы по мещали в раствор для демаскирования антигенов (Dako, Дания) и инкубировали на водяной бане при температуре +95°С в течение 20 мин. Затем срезы промывали PBS и про водили все вышеописанные процедуры. При проведении реакции с антителами к ГФКБ перед инкубацией с первич ными антителами дополнительно проводили блокировку неспе цифического окрашивания в 12% сыворотке крови свиней (Dako, Дания) в течение 20 мин при комнатной температу ре. Затем проводили все вышеописанные процедуры. Для каждого антитела проводили положительный и отрицатель ный контроль окрашивания (табл. 2).

Количество сосудов подсчитывали на препаратах, окра шенных по методу vWF, в левом полушарии в неокортексе (первичная соматосенсорная кора) и головке хвостатого ядра по границе повреждения ткани в пределах 30 мкм под микроскопом Leica (Leica, Германия) через 6 нед. после СМАо. В правом полушарии сосуды были подсчитаны в сим метричной области. Полученные количественные данные были обработаны с помощью программы Statistica (Stat Soft Inc).

Результаты

Анализ культуры ММСК методом проточной цитофлуори метрии показал, что она состояла из CD 45^ клеток (клеток гемопоэтического ряда) - 3% и CD90^ клеток (собственно ММСК) - 97%, среди которых было 15% CD 106^ клеток (рис. 1). Полученные клетки были способны дифференци роваться в остеогенном, адипоцитарном, хондрогенном на правлениях и в направлении нейронального ряда. В наших экспериментах в нейрональном направлении дифференци ровалось около 70% ММСК (6).

Трансплантация ММСК животным после СМАо повыси ла уровень выживаемости (табл. 3) примерно в 1,7 раза.


Первая Помощь При Инсульте. Как Спасти Жизнь?

Поведенческое тестирование. Результаты тестирования в водном лабиринте Морриса представлены на рис. 2 а, б. Видно, что когнитивная функция восстанавливалась прак тически до исходного уровня через 2 нед. после СМАо при условии, что была проведена трансплантация ММСК (груп па № 3). При этом у контрольных животных (группа № 2) в течение всего периода наблюдения (6 нед.) поведенческий статус не восстановился.

Распределение ММСК в головном мозге. Исследования криосрезов мозга животных из групп клеточной терапии с по мощью флуоресцентного микроскопа показало, что меченые ММСК, трансплантированные внутривенно в день СМАо (группа № 3), появлялись в мозге на 3 сут. Они распределя лись вокруг сосудов в обоих полушариях. В контралатераль ном полушарии были выявлены единичные меченые клетки, в ипсилатеральном - практически вокруг всех сосудов. Та кое распределение ММСК сохранялось в течение 6 нед. (рис. 3 а, б). При внутривенной трансплантации через 3 сут. (группа № 4) меченые ММСК были выявлены в мозге также через 3 сут после введения. Единичные ММСК находили в субэпен димной зоне боковых желудочков и только у нескольких жи вотных в хвостатом ядре. Через 6 нед. мы видели меченые клетки только вокруг желудочков мозга (рис. 3 в, г).

Морфологический анализ мозга. Динамику постинсуль тных процессов в мозге через 1, 2, 3, 5 сут после СМАо изучали только у контрольных животных (группа № 2) и жи вотных, которым ММСК были введены в день СМАо (группа № 3). На 1 е, 2 е и 3 и сут. после СМАо в головном мозге животных всех групп формировался некротический очаг. В пограничной с повреждением области вокруг сосудов по явились скопления клеточных элементов периваскуляр ные муфты, состоящие из лимфоцитов, плазматических клеток и иногда эозинофилов. В группе № 3, по сравнению с контролем, периваскулярные муфты были больше по объему, клетки в них расположены в несколько рядов.

Похожие темы:
Инсульт по ишемическому типу это
Препараты от болей после инсульта
Инсульт по ишемическому типу это

Через 5 сут. после СМАо у контрольных животных на грани це некротического очага был выявлен хорошо выраженный лейкоцитарный вал. Распада ткани в центре повреждения еще не наблюдали. В группе № 3 процесс распада и очищения ткани мозга от поврежденных фрагментов проходил заметно быстрее, чем в контроле. В неповрежденной области мозга наблюдали активацию астроцитов (рис. 4 б).

На сроке 1 нед после СМАо мы включили в исследование животных, которым ММСК были введены через 3 сут. после СМАо (группа № 4). Через 1 нед. у животных из группы № 2 в очаге некроза выявили большое количество макрофагов и распадающиеся клетки. Активированных астроцитов в пенумбре еще нет (рис. 4 а). Особого рассмотрения требует состояние клеток субэпендимной зоны бокового желудоч ка ипсилатерального полушария. С помощью иммуногисто химической реакции с антителами к белку Ki67, выявляю щей пролиферирующие клетки, в субэпендимной зоне желудочков были обнаружены редкие иммунопозитивные клетки (рис. 5 а).

Морфологическая картина постинсультных процессов в ткани мозга в группах клеточной терапии № 3 и № 4 че рез 1, 2, 4 и 6 нед. после СМАо практически одинакова. Через 1 нед. в субэпендимной зоне наблюдали митотически делящиеся клетки. Иммуногистохимическое окрашивание тканей мозга антителами к Ki67 показало, что при инсуль тах в данной области появлялась группа пролиферирующих клеток (рис. 5 б, в). Через 2 нед. в контрольной группе выявле на четкая демаркационная линия между тканевым дефектом и неповрежденной тканью. В пенумбре наблюдали клеточ ную инфильтрацию и гибнущие нейроны. Очищение ткани мозга от поврежденных фрагментов еще продолжается. У животных из групп № 3 и № 4 между поврежденной и не поврежденной тканью наблюдали рубец, состоящий из 1 -3 рядов глиальных клеток, расположенный между тканевым дефектом и пограничной зоной. Процесс очищения тканей мозга от погибших клеток уже полностью завершен. Через 4 нед. в ипсилатеральном полушарии контрольных животных наблюдали расширение желудочка. Большая часть неокор текса отсутствовала - на данном участке сформировалась ликворная киста.


ПРИЧИНЫ ПРИЗНАКИ ПОСЛЕДСТВИЯ ИНСУЛЬТА. Первая Помощь при Инсульте

Глиальный рубец между поврежденной и неповрежден ной тканью имеет четко выраженную структуру. У животных из групп № 3 и № 4 в пределах неокортекса граница между поврежденной и неповрежденной тканью выражена четко, рубец структурирован. Большая часть нейронов в сохранив шейся коре мозга не повреждена. При обширных дефектах ткани мозга (большая часть коры полушария, хвостатого ядра и наружная капсула) у животных, как и в контрольной группе, развивалось постинсультное осложнение расши рение желудочков. Через 6 нед. у животных с первоначально обширным инсультом выявлены значительные поврежде ния ткани мозга, коснувшиеся первичной и вторичной со матосенсорной, пириформной и инсулярной коры. На месте дефекта сформировалась ликворная киста с эпендимной вы стилкой, полость которой очень обширна (рис. 6 а). Большин ство нейронов в пограничной зоне повреждено: при окраске тионином по Нисслю ядро и цитоплазма не определялись, иммуногистохимическая реакция на NeN не давала харак терного для ядер нейронов продукта окрашивания (рис. 7 а). Иммуногистохимическая реакция на ГФКБ выявила мощ ный глиоз в пенумбре, неокортексе и, частично, в хвостатом ядре (рис. 8 а). В мозге опытных животных из группы № 3 не наблюдали единой большой полости на месте дефекта ткани. Вместо нее были выявлены мелкие полости разной величи ны, перемежавшиеся с клеточными островками, состоящи ми из капилляров (рис. 6 б). В группе № 4 была выявлена киста в виде единой полости (рис. 6 в). Большинство нейро нов в пограничной с зоне не повреждены (рис. 7 б, в). Имму ногистохимическое окрашивание ткани мозга антителами к ГФКБ показало, что астроциты в наружной капсуле активизировались и формировали капсулу, которая, по всей видимости, препятствовала расширению желудочков и распространению гибели нервной ткани и не деформиро вала мозг (рис. 8 б, в).

Морфометрический анализ. Количество сосудов у жи вотных из групп № 2, 3 и 4 представлено на рис. 9. Объем повреждения ткани мозга у животных из групп № 2, 3, 4 представлен на рис. 10.

Обсуждение

В качестве материала для клеточной терапии ММСК очень перспективны, т. к. для каждого пациента могут быть выделены аутогенные клетки с заданной чистотой популя ции, имеющие четко охарактеризованные жизнеспособ ность, фенотип и дифференцировочный потенциал.

Так, именно по фенотипу: CD 45, CD 90, CD 106^ и по способности дифференцироваться in vitro в остеогенном, хондрогенном, адипоцитарном и нейрональном направле ниях мы делаем вывод, что работаем именно с ММСК. При этом чистота клеточного материала не менее 97% МСК, а жизнеспособность самих клеток (определенная посред ством окраски in vitro трипановым синим) не ниже 95%.


ИШЕМИЧЕСКИЙ ИНСУЛЬТ. КРОВОИЗЛИЯНИЕ В МОЗГ (Как жить после инсульта? Советы врача)

Внутривенное введение выбрано как наиболее щадящий способ трансплантации ММСК. К настоящему времени по казано, что ММСК, как клетки с высоким уровнем экспрес сии CXCR4 - рецептора к SDF 1 (stromal cell derived factor), обладают тропностью к зонам тканевого повреждения, где повышается SDF 1 (10). В настоящей работе ММСК, введенные в хвостовую вену в день СМАо или через 3 сут. после СМАо, были выявлены в мозге на 3 сут. посл трансплантации. Как известно СМАо нарушает целостность гематоэнцефалического барьера (ГЭБ). Казалось бы, с то ком крови ММСК, трансплантированные в день СМАо, дол жны попасть в мозг непосредственно после введения. Но этого не происходит ни в 1 е, ни во 2 е сут. после транс плантации. В своих предыдущих работах (5) мы показали, что и при инфаркте миокарда ММСК, введенные в вену в день one рации, появлялись в тканях сердца в единичном количестве на 2 е сут., а массово - на 3 и. Эти данные подтверждают гипотезу о том, что ММСК не просто пассивно разносятся по организму током крови, а осуществляют направленную миграцию в области тканевого воспаления. К сожалению, в настоящее время этот вопрос до конца не изучен. Разницу в количестве меченых клеток и их распределении в ткани моз га у животных группы № 3 и группы № 4 мы объясняем тем, что ММСК, введенные в день СМАо, успевают пройти в го ловной мозг до восстановления целостности ГЭБ, а через 4-6 сут. после СМАо (когда в организме происходит мигра ция ММСК, трансплантированных внутривенно через 3 сут. после СМАо) его целостность практически восстановлена (11). Мы не располагаем данными о том, что ММСК могут проходить ГЭБ.

Однако, несмотря на такую значительную разницу в рас пределении ММСК, результаты морфологического анализа ткани мозга после СМАо у животных из групп № 3 и 4 практи чески одинаковы. Трансплантация ММСК в день СМАо при вела к более раннему формированию глиального рубца меж ду поврежденной и неповрежденной тканью мозга (на 5 е сут. в группе клеточной терапии и 7 е сут. - в группе конт роля). Известно, что глиальный рубец препятствует прорас танию аксонов. Кроме того, его формирование способствует стабилизации ткани мозга после инсульта: митотически де лящиеся астроциты окружают поврежденную зону и ново образованные сосуды, способствуя восстановлению ГЭБ, предупреждая сильную воспалительную реакцию, начало аутоиммунной реакции и ограничивая клеточную дегенера цию [12]. Через 6 нед. после СМАо в группах клеточной те рапии сформировался глиальный рубец, площадь которого была существенно меньше, чем в контроле. В контрольной группе мощный глиоз затрагивал пенумбру, неокортекс и хвостатое ядро. В группах клеточной терапии глиоз не де формировал ткань и локализовался преимущественно в пограничной с повреждением зоне.

Через 1 нед. у животных из групп № 2, 3, и 4 была выяв лена пролиферация клеток в субэпендимной зоне желудоч ков головного мозга. Однако после трансплантации ММСК мы обнаружили значительное количество делящихся клеток, особенно в группе № 4, а у животных контрольной группы единичные пролиферирующие клетки. Ранее было показано, что СМАо вызывает деление клеток субэпендимной зоны желудочков мозга у крыс (13-15). Более того, была пока зана возможность миграции вновь образованных клеток из эпендимной зоны к области повреждения. Эти клетки окра шивались антителами против нейрональных маркеров, что свидетельствовало об их дифференцировке в нейрональном направлении. Вероятно, данный процесс можно расценивать как ограниченную репарацию нервной ткани.

Трансплантация ММСК как в день СМАо, так и через 3 сут. после инсульта значительно ускорила течение воспали тельной реакции: в группах клеточной терапии воспаление закончилось через 2 нед, в контрольной через 4 нед. Как показано ранее, ММСК in vitro способны секретировать на бор факторов, стимулирующих (IL 1, TNF - tumor necrosis factor), регулирующих (IL 11) и ингибирующих (bTGF -transforming growth factor) воспалительные процессы (16, 17). Мы предполагаем, что и in vivo ММСК принимают учас тие в регуляции процессов воспаления посредством выде ления вышеназванных агентов (паракринная функция).

В обеих группах клеточной терапии зафиксирована ак тивация ангиогенеза в пенумбре. Количество сосудов в ана лизируемой области головного мозга в группе № 3 было больше в 1,4 раза, а в группе № 4 в 1,8 раза по сравнению с контролем. Активация ангиогенеза способствует восста новлению микроциркуляции, а, следовательно, и метаболиз ма в ишемизированной ткани мозга до физиологического уровня. Вероятно, это одна из причин сохранения жизнеспо собности нейронов в пограничной с повреждением зоне.


«Реанимация». Выжил после инсульта

Кроме того, мы предполагаем, что трансплантированные ММСК (независимо от времени трансплантации) оказыва ли нейропротекторное действие на нервную ткань. Мы пола гаем, что и в этом случае реализуется паракринная функция ММСК. Показано, что после добавления в клеточную куль туру экстракта тканей поврежденного мозга ММСК проду цировали такие факторы, как VEGF (vascular endothelial growth factor), BDNF (brain - derived neurotrophic factor), NGF (nerve growth factor) и bFGF (basic fibroblast growth factor) (18, 19), которые предотвращают апоптоз клеток в ткани, пограничной с областью некроза и активируют ангиогенез [7, 20). Действительно, в группах клеточной терапии практически все нейроны в пограничной с повреждением зоне не име ли морфологических изменений, тогда как в контрольной группе мы выявляли только поврежденные или погибшие не рвные клетки. Окраска ядер этих клеток антителами NeuN показала, что в группах клеточной терапии жизнеспособ ные нейроны находились непосредственно рядом с границей повреждения.

Похожие темы:
Инсульт по ишемическому типу это
Рекомендации по восстановлению после инсульта
Инсульт по ишемическому типу это

Мы предполагаем, что вследствие активации ангиогене за и сохранения жизнеспособности нейронов в пограничной с повреждением зоне внутривенная трансплантация ММСК независимо от сроков введения способствовала уменьше нию объема повреждения мозга: в группе № 3 в 1,6 раза, а в группе № 4 в 1,3 раза по сравнению с контролем (р < 0,05).

Положительный эффект клеточной терапии был выяв лен не только на морфологическом уровне в мозге, но и при проведении поведенческого тестирования животных в вод ном лабиринте Морриса. Животные контрольной группы затрачивали в несколько раз больше времени на поиск платформы как во время первого испытания, начатого че рез 2 нед после СМАо, так и во время второго испытания, на чатого через 5 нед после СМАо по сравнению с ложноопери рованными животными и крысами из группы клеточной терапии № 4. Животные из группы клеточной терапии уже к 5 му дню первой сессии обучения вырабатывали оптималь ную стратегию поиска платформы - время выходит на плато -и успешно использовали ее после двухнедельного перерыва. Эти животные затрачивали столько же времени на поиск платформы, сколько и ложнооперированные. Животные же контрольной группы практически не достигали критерия обу ченности за 6 нед. Тест в водном лабиринте Морриса свиде тельствует о том, что ишемический инсульт у крыс приводит к существенному нарушению когнитивных функций у живот ных: они не утрачивают способность к обучению, но за 6 нед. не могут выработать оптимальную тактику поведения во время тестирования. Применение клеточной терапии позво лило восстановить обучаемость, краткосрочную и долговре менную память животных до уровеня ложнооперированных крыс уже к концу 3 нед. после СМАо.


КАК ПРИ ИНСУЛЬТЕ ВЕРНУТЬ ЧЕЛОВЕКА К 100% НОРМАЛЬНОСТИ.КАК РАСПОЗНАТЬ ИНСУЛЬТ?

Все изложенные данные свидетельствуют, что в наших экспериментах клеточная терапия ишемического инсульта у крыс с помощью ММСК дает положительные результаты.

Похожие темы:
Инсульт по ишемическому типу это
Инсульт по ишемическому типу это
Реабилитация инсульта выезд на дом

1. На 17% повышается постоперационная выживаемость животных.

2. Трансплантация ММСК значительно стимулировала ангиогенез в ткани, пограничной с повреждением, тем са мым, способствуя восстановлению метаболизма в ишеми зированной области мозга.


ИНСУЛЬТ - Всё, что нужно знать про инсульты головного мозга

3. Введение ММСК имело ярко выраженное нейропро текторное воздействие - сохранение жизнеспособности нейронов по всему объему пограничной зоны. На достиже ние подобного терапевтического эффекта направлены все нейропротекторные лекарственные препараты, применяю щиеся в настоящее время при лечении инсульта.

Похожие темы:
Разный размер зрачков при инсульте
Инсульт по ишемическому типу это
Низкое давление и случился инсульт

4. Уменьшается объем тканевого дефекта мозговой тка ни и целые мозговые структуры, например хвостатое ядро, сохраняют свое морфологическое строение.

5. Внутривенная трансплантация ММСК привела к со хранению когнитивных функций животных на нормальном физиологическом уровне.

6. На наш взгляд, очень важный момент, имеющий от ношение к практической медицине: внутривенная транс плантация ММСК инсультным животным может быть отсро чена на несколько дней. При этом полученный результат бывает не хуже, чем при трансплантации ММСК во время «терапевтического окна». Мы полагаем, что представлен ную работу можно расценивать как доклиническое иссле дование. На ее основе можно разработать рекомендации для проведения ограниченного клинического исследования.


Использованные источники: http://genescells.ru/article/vozmozhnosti-primeneniya-kletochnoy-terapii-pri-lechenii-ishemicheskogo-insulta-v-eksperimente/

Новые возможности патогенетической коррекции ишемических повреждений ткани головного мозга: взгляд на проблему

Актуальность проблемы

Проблема мозгового инсульта была и продолжает оставаться одной из наиболее актуальных в клинической неврологии. Это определяется большой распространенностью заболевания, высокими показателями первичной инвалидности и смертности. Ежегодно в мире около 15 млн, в США — >750 тыс., России — 450 тыс., в Украине — 105–110 тыс. человек переносят первичный или повторный инсульт. Среди заболевших увеличивается число лиц в возрасте >55 лет. В нашей стране, согласно последним данным центра медицинской статистики МЗ Украины, около 35,5% всех мозговых инсультов возникает у лиц трудоспособного возраста. Инсульт является второй по частоте причиной смерти в мире. В 2005 г. он был причиной 5,7 млн фатальных исходов, прогнозируется рост смертности от инсульта до 6,7 млн в 2015 г. и до 7,7 млн в 2030 г., если не будут предприняты активные глобальные меры по борьбе с этой эпидемией (Culebras F., 2007). Смертность от цереброваскулярных заболеваний в Украине в 2007 г. достигла 220,6 случая на 100 тыс. населения (Міщенко Т.С., 2008).

Среди всех сосудистых заболеваний головного мозга наиболее распространенные острые ишемические нарушения мозгового кровообращения. Согласно данным международных мультицентровых исследований, соотношение ишемических и геморрагических инсультов составляет соответственно 85 и 15% и остается относительно на стабильном уровне. Поэтому среди выживших после инсульта пациентов с последствиями заболевания и выраженной степенью инвалидности преобладают лица, которые перенесли его ишемический вариант. Большинство из них не возвращаются к нормальной жизни, а 1/3 — нуждаются в посторонней помощи для самообслуживания. К трудовой деятельности к концу 1-го года после инсульта возвращаются примерно 20% всех работавших до заболевания. Таким образом, мозговой инсульт — это сложная медицинская проблема, которая вышла за рамки медицинской науки и практики, приобрела важное социально- экономическое значение.

Современные терапевтические подходы

В патофизиологическом процессе постишемических нарушений в период от окклюзии церебральной артерии до необратимого поражения нейронов существует несколько звеньев для эффективного терапевтического воздействия. Среди них выделяют два важнейших процесса, которые разворачиваются последовательно:

а) дефицит локального мозгового кровотока, энергии и формирование фокальной церебральной ишемии;

б) патобиохимические и молекулярные реакции, обусловленные ишемическим и воспалительным каскадом.

Дефицит энергии и активация фосфолипаз при ишемии приводят к разрушению мембран нейронов и, в конечном счете, к их гибели. Именно поэтому учет динамических ранних клеточных реакций, являющихся следствием ишемии (снижение рО2, уровня глюкозы, АТФ, нарастание содержания ионов кальция в цитоплазме нейронов), и отдаленных патобиохимических, воспалительно-метаболических нарушений, характеризующихся активацией катаболических ферментов (фосфолипаз, липоксигеназ, циклооксигеназ и др.), происходящих в ишемизированной ткани мозга (пенумбре), и на этой основе разработка методов эффективного терапевтического воздействия на различные взаимосвязанные звенья так называемого ишемического каскада привлекают все большее внимание неврологов и представителей других медицинских специальностей.

Тромболитическая терапия

Для восстановления функционирования нейронов в зоне ишемической полутени, в которой критически снижен уровень кровотока, но отсутствуют структурные изменения нейронов, наиболее эффективным методом в ранний период после развития инсульта является реканализация инфарктзависимой церебральной артерии (ИЗЦА), то есть тромболитическая терапия (ТРТ) с использованием рекомбинантного тканевого активатора плазминогена (recombinant tissue plasminogen activator — rt-PA). Несомненно, это расширило возможности медикаментозной терапии острого ишемического инсульта, однако не решило проблем эффективного лечения завершенного территориального инсульта. Проведение тромболизиса ограничено рамками 3-часового «терапевтического окна». И хотя данные испытания европейского объединенного исследования инсульта III фазы (ECASS III — European Cooperative Acute Stroke Study III) свидетельствуют о том, что «терапевтическое окно» может быть расширено до 4,5 ч, однако 3-часовой период остается предпочтительным (Hacke W. et al., 2008). Последнее определяется функциональным состоянием нейронов ишемической пенумбры, которое в каждом конкретном случае является сугубо индивидуальным процессом, имеющим временные отличия в зависимости от уровня мозговой перфузии.

С другой стороны, даже при ранней реканализации ИЗЦА отдаленные результаты лечения при ишемическом инсульте не всегда оправдывают ожидания, поскольку после восстановления проходимости окклюзированной артерии часто развивается реперфузионное повреждение ткани мозга. Иногда реперфузия приводит к еще большему тканевому повреждению, углублению неврологического дефицита, чем ее отсутствие (Kent T.A. et al., 2001). Риск реперфузионного повреждения повышается, если тромболизис проводится вне пределов 3-часового «терапевтического окна».

Для предупреждения риска реперфузионного повреждения на этапе временных рамок «терапевтического окна» важно как можно более точно и в ранние сроки выявить потенциально жизнеспособную и необратимо поврежденную ткань головного мозга. С этой целью используют высокоинформативные новые методы нейровизуализации — диффузионно- и перфузионно-взвешенную магнитно-резонансную томографию (ДВ-МРТ и ПВ-МРТ). ДВ-режим выявляет зону, где не происходит диффузия воды, что свидетельствует о необратимом повреждении мембран и гибели клеток; ПВ-режим позволяет визуализировать и количественно оценить регионарную перфузию, тем самым установить размеры ишемической пенумбры в первые 1–6 ч (Griffiths P.D. et al., 2001).

По МРТ-изображениям, полученным в ДВ- и ПВ-режимах, можно получить информацию о диффузионно-перфузионном несоответствии, которое отражает разницу между бóльшими по объему изменениями ткани мозга по данным ПВ-МРТ и меньшими изменениями на ДВ-МРТ. С учетом объема диффузионно-перфузионного несоответствия устанавливают размеры потенциально жизнеспособной ткани ишемической полутени и определяют направление специфической терапии. На основании данных параметров предложены возможные варианты терапии острого ишемического инсульта (Barber P.A. et al., 1998):

● ПВ-повреждение > ДВ-повреждения => реперфузия;

● ПВ-повреждение = ДВ-повреждения => нейропротекция;

● ПВ-повреждение < ДВ-повреждения => нейропротекция;

● повреждение только по данным ДВ-МРТ => нейропротекция;

● повреждение только по данным ПВ-МРТ (риск развития инсульта) => реперфузия;

● повреждения по данным ДВ- и ПВ-МРТ отсутствуют при наличии неврологического дефицита => вмешательства не проводятся.

Таким образом, оценка соотношения объемов очагов при МРТ-исследовании в ДВ- и ПВ- режимах служат основанием для принятия решения о целесообразности проведения тромболизиса, достижения реперфузии и/или нейропротекции.

Однако восстановление мозговой перфузии с помощью тромболизиса ограничивается наличием значительных противопоказаний, высоким риском геморрагических осложнений, необходимостью надежной верификации вида инсульта и проведения не только компьютерной томографии или МРТ- исследования, но и МРТ-визуализации в ДВ- и ПВ- режимах, которые имеют большое значение. Анализ данных литературы показывает, что на сегодня чаще всего в клинической практике используют только МРТ в ДВ- изображениях, значительно реже — комбинацию ДВ- и ПВ- изображений, еще реже — только МРТ в ПВ-режимах (Keir S.L., Wardlaw J.M., 2000). Это свидетельствует о том, что не всегда терапия острого ишемического инсульта проводится с учетом визуализации области диффузии и перфузии. Вместе с тем выявляемая существенная взаимосвязь между клиническим улучшением по шкале NIHSS (National Institutes of Health Stroke Scale, США) и объемом повреждения ткани мозга диктует необходимость использования ДВ-МРТ как маркера эффективности реперфузии и/или нейропротекции.

Следует также подчеркнуть, что при проведении тромболитической терапии важно достижение полного «открытия» ИЗЦА. Остаточный стеноз артерии разрушенной бляшкой не устраняет истинных причин закупорки сосуда. При такой клинической ситуации сохраняется риск повторного внутрисосудистого тромбообразования и реокклюзии ИЗЦА, частота которых после проведенного тромболизиса достаточно высокая и составляет 34%. Кроме того, многие из тромбов и эмболов из-за различия их структуры вообще не растворяются современными тромболитиками, что является одной из причин недостаточной эффективности тромболитической терапии (Пирадов М.А., 2007).

Как бы то ни было, на сегодня в Украине проведение тромболитической терапии имеет значительные ограничения, связанные с узкими рамками «терапевтического окна», финансовыми, организационными и техническими проблемами. Именно поэтому rt-PA-терапия не стала стандартом лечения ишемического инсульта в нашей стране. Следует отметить, что и в общественных больницах за рубежом также лишь небольшая (2–3%) часть пациентов с ишемическим инсультом получают тромболитическую терапию (Muir K.W., Grosset D.G., 1999; Szoeke C.E. et al., 2003).

Концепция фармакологической нейропротекции

Наряду с совершенствованием организационных мероприятий, внедрением тромболитической терапии в рутинную клиническую практику лечения острого ишемического инсульта, в последние десятилетия интенсивно разрабатываются методы метаболической коррекции патобиохимических нарушений, обусловленных ишемией и реперфузией, медикаментозной защиты нейронов и восстановления функции пораженной ткани мозга, то есть методы, направленные на предупреждение распространения деструктивных процессов вследствие активации ишемического каскада и провоспалительных реакций. Эффективная и своевременно начатая нейропротекторная терапия до, во время и после внутривенного введения rt-PA позволяет ослабить или затормозить механизмы необратимого повреждения нейронов ишемической полутени, улучшить их трофику и энергообеспечение, тем самым потенциально может способствовать расширению рамок «терапевтического окна» (Фишер М., Шебитц В., 2001). Такие исследования проводятся на стадии экспериментальной апробации (Andersen M. et al., 1999; Alonso de Leciñana M. et al., 2006).

Медикаментозная нейропротекция или защита нейронов от повреждающего действия ишемического каскада, нейрональной «смерти» на клеточном и молекулярном уровнях или коррекция его последствий имеет также важное самостоятельное значение как одно из направлений интенсивной терапии острой цереброваскулярной патологии. Она основана на различных эффектах: стабилизации функции клеточных мембран, массивная деполяризация которых считается основным критерием необратимого поражения клеток; угнетении глутаматно-кальциевой экзайтотоксичности и других клеточных реакций; воздействии на оксидативный стресс нейронов — один из универсальных механизмов поражения ишемизированной ткани мозга — и на другие компоненты ишемического и воспалительного каскада. Главной мишенью атаки терапевтического воздействия с помощью тромболизиса и/или нейропротекции является ишемическая полутень.

На сегодня именно это и определило смещение акцентов исследования патофизиологии ишемического инсульта от изучения гемодинамических нарушений и метаболических эффектов на углубленное исследование роли патобиохимических процессов, клеточных реакций, молекулярных механизмов в повреждающем действии ишемизированной ткани мозга.

Однако концепция фармакологической нейропротекции на практике оказалась трудно осуществимой медицинской проблемой. Длительный поиск эффективных нейропротекторов не обеспечил однозначных позитивных результатов. Несмотря на многочисленные экспериментальные исследования, в которых установлены положительные свойства заявленных нейропротекторных препаратов, в клинических испытаниях фазы II и III их применение сопровождалось выраженными побочными действиями или было неэффективным (Arakawa S. et al., 2005; Muir K.W., Teal P.A., 2005). По- видимому, этим можно объяснить тот факт, что на сегодня не существует клинически приемлемой нейропротекторной программы терапии острого ишемического инсульта, которая достоверно подтверждала улучшение исхода заболевания на фоне применения нейропротекторных препаратов (European Stroke Organisation (ESO) Executive Committee; ESO Writing Committee, 2008).

Вместе с тем было бы ошибкой ставить под сомнение значение и полезность нейропротекции для терапии инсульта у людей. Проведенный нами анализ данных литературы показал, что медикаментозная нейропротекция для неврологов сохраняет свою привлекательность как важная составляющая терапии острого мозгового инсульта. Поэтому более 30 международных центров разных стран на сегодня проводят экспериментальные и клинические исследования относительно эффективности разных лекарственных средств с потенциальными нейропротекторными свойствами.

Одним из признанных универсальных механизмов повреждения ткани головного мозга при ишемии/реперфузии (реоксигенации) является активация перекисного окисления липидов (ПОЛ), гиперпродукция агрессивных свободных радикалов (гидроксил- радикал, супероксидный анион- радикал, монооксид азота и продукт их взаимодействия — пероксинитрит) и вызванное этим окисление биологических молекул. Последнее в свою очередь приводит к деградации фосфолипидных мембран, активации локального воспаления, повреждению нейронов, ослаблению трофической и регенеративной функции нервной ткани, системы эндогенной антиоксидантной защиты. Поэтому интенсификация утилизации глюкозы, ослабление интенсивности свободнорадикального окисления и ПОЛ, других проявлений ишемически-реперфузионного повреждения ткани головного мозга также является целями нейропротекции.

Таким образом, острый ишемический инсульт — это серьезная энергетическая и метаболическая катастрофа, обусловленная нарушением мозгового кровообращения, проявляющаяся сочетанием различных повреждений ткани головного мозга, опосредованная разными патогенетическими механизмами гибели нейронов. Поэтому в реальной клинической практике внимание неврологов должно быть направлено на сочетанное применение нейропротекторных и антиоксидантных препаратов, оказывающих ингибирующее воздействие на экспрессию и активность катаболических ферментов (фосфолипаз, липоксигеназ, циклооксигеназ и др.), уменьшающих прооксидантный потенциал протекающих процессов, инактивирующих липидные перекиси в структурах биомембран нейронов. Комплексная фармакологическая нейропротекция путем воздействия на взаимосвязанные патобиохимические и молекулярные механизмы, за счет процессов компенсации, нейрональной пластичности, формирования новых проводников, установления новых синаптических связей, несомненно, должна способствовать более значительному восстановлению структуры и функции поврежденной нервной системы.

Цераксон (цитиколин)

В настоящее время появились новые фармакологические препараты, эффекты которых связаны с комплексным нейропротекторным действием на нейроны ишемизированной ткани головного мозга, обладающие свойствами мембранопротекторов и антиоксидантов. К таким средствам относится цитиколин (цитидин-5′-дифосфохолин; ЦДФ-холин) производства компании «Ferrer Internacional» (Испания), зарегистрированный в Украине в 2006 г. компанией «Nycomed» (Австрия) под названием Цераксон. Результаты метаанализа крупных рандомизированных плацебо-контролируемых клинических исследований III фазы свидетельствуют, что, в отличие от других нейропротекторов, цитиколин — единственный препарат, имеющий высокий уровень доказательной базы, достоверно влияющий на исходы острого ишемического инсульта при применении в первые 24 ч после его развития (Clark W.M. et al., 2001; Dávalos A. et al., 2002; Conant R., Schauss A.G., 2004; Adibhatla R.M., Hatcher J.F., 2005).

Результаты проведенных рандомизированных клинических исследований показали, что цитиколин имеет широкий спектр нейропротекторного действия:

● уменьшает выброс с аксональных терминалей глутамата, стимулирует обратный внутриклеточный захват нейромедиаторных аминокислот и, соответственно, способствует снижению активности постсинаптических комплексов NMDA-, AMPA-рецептор- канал, подавлению трансмембранного транспорта ионов кальция в клетку (Hurtado O. et al., 2005);

● тормозит процесс разрушения мембран ишемизированных нейронов путем ингибирования активности фосфолипазы А2, восстанавливает их структуру и функцию за счет стимуляции биосинтеза фосфатидилхолина — одного из структурных элементов клеточных мембран (Adibhatla R.M. et al., 2002);

● нормализует энергетику митохондрий, восстанавливает функционирование Na+/K+-АТФазы, сниженный уровень АТФ в ткани головного мозга, энергетические процессы в нейронах (Farooqui A.A. et al., 2000; Secades J.J., 2002);

● ослабляет свободнорадикальное окисление и ПОЛ, снижает окислительный стресс после ишемии/реперфузии, повышает активность эндогенной антиоксидантной системы защиты клеток за счет стимуляции синтеза глутатиона — неферментного фактора внутриклеточной антиоксидантной защиты — и повышения активности фермента глутатионредуктазы (Adibhatla R.M. et al., 2002);

● предотвращает гибель нейронов путем торможения выброса глутамата и подавления экспрессии белков, участвующих в развитии апоптоза после ишемии (Krupinski J. et al., 2002; Mir C. et al., 2003).

Таким образом, нейропротекторные свойства Цераксона определяются разными фармакодинамическими механизмами. Именно плейотропные эффекты препарата побудили большой интерес исследователей к изучению его роли в нейропротекции острого ишемического инсульта. Плейотропия (греч. pleion — многочисленный и tropos — поворот, направление) — понятие ранее преимущественно применяемое в генетике. Здесь это понятие используется в более широком смысле — множественность эффектов, действий одного и того же препарата не только на причины повреждения ишемизированной ткани мозга, но и на процессы восстановления структуры и функций нервной ткани за счет нейропротекторных и нейрорепаративных эффектов, увеличения пластичности нейронов. Полагают, что действие Цераксона более многогранное, чем просто влияние на различные этапы ишемического каскада. Поэтому даже монотерапия с использованием данного препарата, обладающего плейотропными по отношению к поврежденной ткани мозга эффектами, несомненно, имеет важное значение в обеспечении комбинированной нейропротекции, повышении результативности лечения при остром ишемическом инсульте.

Эффективность применения цитиколина в лечении пациентов с острым ишемическим инсультом подтверждена многочисленными клиническими испытаниями, проведенными в США, Европе и Японии. Первичной конечной точкой оценки эффективности служила общепринятая оценка восстановления функций, выраженная комбинацией показателей по шкалам: NIHSS ≤1 балла, модифицированной шкале Рэнкина (МШР) ≤1 балла, индексу Бартел (ИБ) ≥95 баллов. Оценивалась также эффективность препарата по отдельным шкалам (NIHSS, ИБ и МШР) и показателю смертности в сравнении с плацебо. В исследованиях, проведенных в Европе и Японии, использовали внутривенный путь введения цитиколина, а в США — пероральный.

Проведенный метаанализ 7 больших американских клинических испытаний, которые базируются на оценке 1652 пациентов с острым ишемическим инсультом и фоновым неврологическим дефицитом по шкале NIHSS ≥8 баллов, подтвердил эффективность перорального приема цитиколина в дозах 500; 1000; 2000 мг/сут в течение 6 нед. Общее восстановление функций достигнуто у 25,2% пациентов, принимающих цитиколин, по сравнению с 20,2% больных, получавших плацебо. Самый выраженный терапевтический эффект отмечали при приеме препарата в дозе 2000 мг/сут: общее восстановление функций определялось у 31,6% пациентов на фоне применения цитиколина и у 27,7% — плацебо (р=0,0045). Терапия цитиколином не оказывала какого-либо влияния на смертность в течение 3 мес наблюдения (18,8% в группе больных, получавших цитиколин и 17,8% — плацебо) (Dávalos A. et al., 2002). Авторы делают вывод, что терапия цитиколином для перорального применения в течение первых 24 ч после развития инсульта у пациентов со среднетяжелой и тяжелой формами инсульта повышает вероятность полного восстановления неврологических функций через 3 мес. Препарат не оказывал побочных эффектов.

Однако пероральный путь оказался не самым подходящим для введения цитиколина. Он не обеспечивал достаточного накопления содержания ЦДФ-холина в головном мозге, повышения его клинической эффективности (Adibhatla R.M. et al., 2002).

В европейских клинических исследованиях установлено, что внутривенное введение цитиколина в разных дозах при разной продолжительности лечения более существенно улучшало неврологические функции, способствовало раннему восстановлению двигательной и когнитивных функций (Adibhatla R.M. et al., 2002; Secades J.J., 2002; Rogalewski A. et al., 2006). В исследовании, проведенном E.A. Corso и соавторами (1982), оценивалась эффективность внутривенных инфузий цитиколина в дозе 1000 мг/ сут. в течение 30 дней лечения: у 71% пациентов, принимавших цитиколин, отмечали существенное улучшение неврологических функций, в группе плацебо — у 31%.

Во многоцентровом двойном слепом плацебо-контролируемом исследовании, проведенном в Японии, включавшем 272 пациента с острым среднетяжелым и тяжелым церебральным инфарктом и нарушением сознания разной степени выраженности, установлено, что внутривенное капельное введение цитиколина в дозе 1000 мг/ сут улучшало показатели по общей рейтинговой шкале исходов: восстановление сознания отмечали у 51% пациентов (в группе плацебо — у 39%); улучшение неврологических функций — у 56% больных (в группе плацебо — у 26%) (Tazaki Y. et al., 1988).

Нейропротекторный эффект цитиколина подтверждается также изменением объема необратимого поражения ткани мозга по данным МРТ и ДВ-МРТ, которое носило явно дозозависимый характер: если в группе плацебо размер очага увеличивался в среднем на 84,7%, то у пациентов, получавших цитоколин в дозе 0,5 г/сут — на 34%, в дозе 2,0 г/сут — всего на 1,8% (Warach S. et al., 2000).

В нашем клиническом исследовании, включавшем 70 пациентов с острым среднетяжелым и тяжелым ишемическим инсультом, рандомизированных в группу Цераксона (27 пациентов) и традиционной терапии (43), оценивалась эффективность внутривенных инфузий Цераксона в дозе 2000 мг/ сут в течение 10 дней с последующим внутримышечным введением в дозе 1000 мг/ сут — 5 дней и пероральным применением препарата по 200 мг 3 раза в сутки в течение 30 дней. Применение Цераксона на 21-е сутки лечения по объему восстановления неврологических функций в баллах по шкалам NIHSS и МШР было высокоэффективным у 70,4% пациентов по сравнению с 34,9% у лиц, получавших традиционную терапию. Полное восстановление неврологических функций, выраженное комбинацией показателей NIHSS ≤1, МШР ≤1 и ИБ ≥95 баллов, через 3 мес терапии достигнуто у 29,6% пациентов, лечившихся Цераксоном, в сравнении с 23,3% — в контрольной группе (р<0,05). Ранняя смертность (в первые 2 нед) существенно не отличалась (в группе Цераксона — 7,4%, традиционная терапия — 9,3%; р>0,1). Безопасность применения Цераксона была подобной безопасности традиционной терапии (Віничук С.М. та співавт., 2008).

Таким образом, терапия с использованием Цераксона при внутривенном капельном применении в течение первых 24 ч после развития симптомов у пациентов со среднетяжелым и тяжелым ишемическим инсультом значительно повышает вероятность полного восстановления неврологических функций через 3 мес.

В недавно опубликованной работе J.J. Secades и соавторов (2006) сообщается об эффективности и безопасности цитиколина в лечении больных с интрацеребральной геморрагией.

Кокрановская группа провела обзор и перекрестный анализ 7 клинических исследований для оценки риска и пользы применения цитиколина не позднее 14 дней после развития ишемического или геморрагического инсульта (всего 1963 пациента). Во всех исследованиях препарат назначали внутрь или внутривенно в дозах от 0,5 до 2,0 г/ сут. Установлено значительное снижение суммарного показателя смертности и частоты инвалидности при длительном наблюдении: 54,6% против 66,4% в группе плацебо, то есть снижение показателей смертности и частоты инвалидности на 10–12% (Saver J.L., Wilterdink J., 2002).

Выводы

Результаты проведенных в разных странах мира больших рандомизированных слепых исследований продемонстрировали эффективность и безопасность применения цитиколина при лечении острого мозгового инсульта, что обусловлено широким спектром нейропротекторного действия препарата.

Отмечено повышение эффективности лечения ишемического инсульта при внутривенном применении Цераксона (цитиколина) в первые 24 ч после развития заболевания; максимальный терапевтический эффект достигается при внутривенном капельном введении в дозе 2000 мг/сут.

Нейропротекторный, мембраностабилизирующий, антиоксидантный, антиапоптотический эффекты Цераксона (цитиколина) подтверждаются клинически и данными ДВ-МРТ, отражающими уменьшение объема необратимого поражения ткани головного мозга при ишемии/реперфузии.

Применение Цераксона (цитиколина) повышает эффективность лечения больных с интрацеребральным кровоизлиянием, что оправдывает назначение препарата пациентам с мозговыми инсультами еще на догоспитальном этапе до точной диагностики вида острого нарушения мозгового кровообращения.

Терапия с применением Цераксона (цитиколина) снижает суммарный показатель риска смертности и недееспособности на 10–12% при длительном проспективном наблюдении за больными с мозговым инсультом.

Ссылки

  • 1. Віничук С.М., Мохнач В.О., Прокопів М.М. та співавт. (2008) Нейропротекторна терапія в гострий період ішемічного інсульту. Міжнар. неврол. журн., 4(20): 42–48.
  • 2. Міщенко Т.С. (2008) Епідеміологія цереброваскулярних захворювань в Україні у 2007 р. Судинні захворювання головного мозку, 2: 3–7.
  • 3. Пирадов М.А. (2007) Интенсивная терапия инсульта: взгляд на проблему. Анналы клин. и эксперим. неврологии, 1(1): 17–22.
  • 4. Фишер М., Шебитц В. (2001) Обзор подходов к терапии острого инсульта: прошлое, настоящее и будущее. Журн. неврологии и психиатрии им. С.С. Корсакова. Инсульт (приложение), 1: 21–33.
  • 5. Adibhatla R.M., Hatcher J.F. (2005) Cytidine 5’-diphosphocholine (CDP-choline) in stroke and other CNS disorders. Neurochem. Res., 30(1): 15–23.
  • 6. Adibhatla R.M., Hatcher J.F., Dempsey R.J. (2002) Citicoline: neuroprotective mechanisms in cerebral ischemia. J. Neurochem., 80(1): 12–23.
  • 7. Alonso de Leciñana M., Gutiérrez M., Roda J.M. et al. (2006) Effect of combined therapy with thrombolysis and citicoline in a rat model of embolic stroke. J. Neurol. Sci., 247(2): 121–129.
  • 8. Andersen M., Overgaard K., Meden P. et al. (1999) Effects of citicoline combined with thrombolytic therapy in a rat embolic stroke model. Stroke, 30(7): 1464–1471.
  • 9. Arakawa S., Perera N., Donnan G.A. (2005) Neuroprotection in stroke. ACNR, 5(5): 10–11.
  • 10. Barber P.A., Darby D.G., Desmond P.M. et al. (1998) Prediction of stroke outcome with echoplanar perfusion- and diffusion-weighted MRI. Neurology, 51(2): 418–426.
  • 11. Clark W.M., Wechsler L.R., Sabounjian L.A., Schwiderski U.E.; Citicoline Stroke Study Group (2001) A phase III randomized efficacy trial of 2000 mg citicoline in acute ischemic stroke patients. Neurology, 57(9): 1595–1602.
  • 12. Conant R., Schauss A.G. (2004) Therapeutic applications of citicoline for stroke and cognitive dysfunction in the elderly: a review of the literature. Altern. Med. Rev., 9(1): 17–31.
  • 13. Corso E.A., Arena M., Ventimiglia A. et al. (1982) CDP choline in cerebral vasculopathy: clinical evaluation and instrumental semeiology. Clin. Ter., 102(4): 379–386.
  • 14. Culebras A. (2007) Stroke is preventable catastrophic disease. Журн. неврологии и психиатрии им. С.С. Корсакова (Приложение к журналу «Инсульт»). Материалы ІІ Российского международного конгресса «Цереброваскулярная патология и инсульт», с. 75–76.
  • 15. Dávalos A., Castillo J., Alvarez-Sabín J. et al. (2002) Oral citicoline in acute ischemic stroke: an individual patient data pooling analysis of clinical trials. Stroke, 33(12): 2850–2857.
  • 16. European Stroke Organisation (ESO) Exe­cutive Committee; ESO Writing Committee (2008) Guidelines for management of ischaemic stroke and transient ischaemic attack 2008. Cerebrovasc. Dis., 25(5): 457–507 (см. также: http://www.eso-stroke.org/pdf/ESO08_Guidelines_Russian.pdf).
  • 17. Farooqui A.A., Horrocks L.A., Farooqui T. (2000) Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids, 106(1): 1–29.
  • 18. Griffiths P.D., Wilkinson I.D., Wels T., Hoggard N. (2001) Brain MR perfusion imaging in humans. Acta Radiol., 42(6):555–559.
  • 19. Hacke W., Kaste M., Bluhmki E. et al.; ECASS Investigators (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N. Engl. J. Med., 359(13): 1317–1329.
  • 20. Hurtado O., Moro M.A., Cárdenas A. et al. (2005) Neuroprotection afforded by prior citicoline administration in experimental brain ischemia: effects on glutamate transport. Neurobiol. Dis., 18(2): 336–345.
  • 21. Keir S.L., Wardlaw J.M. (2000) Systematic review of diffusion and perfusion imaging in acute ischemic stroke. Stroke, 31(11): 2723–2731.
  • 22. Kent T.A., Soukup V.M., Fabian R.H. (2001) Heterogeneity affecting outcome from acute stroke therapy: making reperfusion worse. Stroke, 32(10): 2318–2327.
  • 23. Krupinski J., Ferrer I., Barrachina M. et al. (2002) CDP-choline reduces pro-caspase and cleaved caspase-3 expression, nuclear DNA fragmentation, and specific PARP-cleaved products of caspase activation following middle cerebral artery occlusion in the rat. Neuropharmacology, 42(6): 846–854.
  • 24. Mir C., Clotet J., Aledo R. et al. (2003) CDP-choline prevents glutamate-mediated cell death in cerebellar granule neurons. J. Mol. Neurosci., 20(1): 53–60.
  • 25. Muir K.W., Grosset D.G. (1999) Neuroprotection for acute stroke: making clinical trials work. Stroke, 30(1): 180–182.
  • 26. Muir K.W., Teal P.A. (2005) Why have neuro-protectants failed?: lessons learned from stroke trials. J. Neurol., 252(9): 1011–1020.
  • 27. Rogalewski A., Schneider A., Ringel­stein E.B., Schäbitz W.R. (2006) Toward a multimodal neuroprotective treatment of stroke. Stroke, 37(4): 1129–1136.
  • 28. Saver J.L., Wilterdink J. (2002) Choline precursors in acute and subacute human stroke: a meta-analysis. Stroke, 33: 353.
  • 29. Secades J.J. (2002) CDP-choline: update and review of its pharmacology and clinical use. Methods Find. Exp. Clin. Pharmacol., 24(Supp. B): 1–53.
  • 30. Secades J.J., Alvarez-Sabín J., Rubio F. et al.; Trial Investigators (2006) Citicoline in intracerebral haemorrhage: a double-blind, randomized, placebo-controlled, multi-centre pilot study. Cerebrovasc. Dis. 21(5–6): 380–385.
  • 31. Szoeke C.E., Parsons M.W., Butcher K.S. et al. (2003) Acute stroke thrombolysis with intravenous tissue plasminogen activator in an Australian tertiary hospital. Med. J. Aust., 178(7): 324–328.
  • 32. Tazaki Y., Sakai F., Otomo E. et al. (1988) Treatment of acute cerebral infarction with a choline precursor in a multicenter double-blind placebo-controlled study. Stroke, 19(2): 211–216.
  • 33. Warach S., Pettigrew L.C., Dashe J.F. et al. (2000) Effect of citicoline on ischemic lesions as measured by diffusion-weighted magnetic resonance imaging. Citicoline 010 Investigators. Ann. Neurol., 48(5): 713–722.

Винничук Степан Мілентійович

Резюме. У статті наведені дані щодо місця тромболітичної та нейропротекторної терапії в лікуванні гострого ішемічного інсульту. Відзначається, що для прийняття рішення щодо доцільності проведення тромболізису (безумовно, з урахуванням протипоказань) і/або нейропротекції важлива оцінка магнітно-резонансних томографічних зображень у дифузійно- та перфузійно-зважених режимах і визначення дифузійно-перфузійної невідповідності. Розглянуто особливості фармакодинаміки цитиколіну (Цераксону), а також результати його клінічного застосування при гострому ішемічному інсульті та внутрішньомозковому крововиливі. Препарат широко застосовується як нейропротектор, мембраностабілізатор, антиоксидант, має високий рівень доказової бази. Терапія з використанням цитиколіну (Цераксону) знижує ризик смертності та недіє­здатності на 10–12% у разі тривалого спостереження пацієнтів з мозковим інсультом.

Ключові слова:ішемічний інсульт, тромболітична терапія, нейропротекторна терапія, цитиколін, Цераксон, лікування

Vinychuk S М

Summary. Article represents data on the place of thrombolytic and neuroprotective therapy in the acute ischemic stroke treatment. Diffusion- and perfusion-weighted magnetic resonance imaging and evaluation of the diffusion-perfusion mismatch are important and necessary for making the decision to apply thrombolysis and/or neuroprotection. Peculiarities of the citicoline (Ceraxon) pharmacodynamics are viewed, as well as results of its clinical application in acute ischemic stroke and intracerebral hemorrhage. This preparation is widely used as a neuroprotector, membrane stabilizer, antioxidant, and has a high level of evidence. Therapy with citicoline (Ceraxon) in patients with acute stroke reduced the rates of long-term death and disability by 10–12%.

Key words: ischemic stroke, thrombolytic therapy, neuroprotective therapy, citicoline, Ceraxon, treatment


Использованные источники: https://www.umj.com.ua/article/2711/novye-vozmozhnosti-patogeneticheskoj-korrekcii-ishemicheskix-povrezhdenij-tkani-golovnogo-mozga-vzglyad-na-problemu

Публикации (при инсульте)

Медикаменты для лечения выбирают в зависимости от типа инсульта и состояния пациента при поступлении в больницу. В схемах используют таблетки, уколы и капельницы. Начинать лечение следует как можно раньше. Оптимальный срок – первые часы с момента появления симптомов.

Препараты, которые применяются, можно разделить на три большие группы:

  • Медикаменты для острейшего периода. Они используются в первые часы и дни после инсульта.
  • Препараты для профилактики и предотвращения новых инсультов в последующем.
  • Средства, используемые в период реабилитации, для восстановления функций мозга и моторики.

Перечень медикаментов может отличаться для геморрагического или ишемического инсульта.

Медикаменты для острого периода

Препараты для лечения ишемического инсульта

Лечение ишемического инсульта направлено на:

  • Растворение тромба.
  • Налаживание микроциркуляции крови.
  • Защиту нейронов от гипоксии.

Если на томограмме видна тромбоэмболия, то начинают вводить препараты, способствующие тромболизису.

  • Тканевой активатор плазминогена tPA (альтеплаза).альтеплаза). Представляет собой белок, который способен соединяться с фибрином и запускать каскад реакций по его растворению. Вводится внутривенно в первые 4,5 часов после инсульта. Выпускается под торговым названием Актилизе.

Перед использованием альтеплазы очень важно точно определить тип инсульта, так как при геморрагическом поражении и наличии кровотечения тканевой активатор категорически противопоказан.

Если тромб большой и находится в крупной артерии, может проводиться томбоэктомия – удаление сгустка специальным устройством, вводимым через паховую артерию.

Кроме троболизиса необходимо остановить поражение нейронов и максимально восстановить участки, пострадавшие от ишемии. Для этих целей используют Ксаврон. Он блокирует ишемический каскад, который завершается гибелью нервных клеток.

Медикаменты при геморрагическом инсульте

При кровоизлиянии нужно остановить кровотечение. Основной причиной разрыва сосуда является гипертония. Пациенту дают препараты для снижения артериального и внутричерепного давления. В дальнейшем требуется устранить гематому. Если она обширная, то необходимо хирургическое вмешательство.


Использованные источники: https://xavron.com.ua/ru/publ-cat/when-stroke-ru/

2
Понравилась статья? Поделиться с друзьями:
arriba-fitness.ru

Комментарии закрыты.